Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions

نویسندگان

  • Holger R. Maier
  • Ashu Jain
  • Graeme C. Dandy
  • K. P. Sudheer
چکیده

Over the past 15 years, artificial neural networks (ANNs) have been used increasingly for prediction and forecasting in water resources and environmental engineering. However, despite this high level of research activity, methods for developing ANN models are not yet well established. In this paper, the steps in the development of ANN models are outlined and taxonomies of approaches are introduced for each of these steps. In order to obtain a snapshot of current practice, ANN development methods are assessed based on these taxonomies for 210 journal papers that were published from 1999 to 2007 and focus on the prediction of water resource variables in river systems. The results obtained indicate that the vast majority of studies focus on flow prediction, with very few applications to water quality. Methods used for determining model inputs, appropriate data subsets and the best model structure are generally obtained in an ad-hoc fashion and require further attention. Although multilayer perceptrons are still the most popular model architecture, other model architectures are also used extensively. In relation to model calibration, gradient based methods are used almost exclusively. In conclusion, despite a significant amount of research activity on the use of ANNs for prediction and forecasting of water resources variables in river systems, little of this is focused on methodological issues. Consequently, there is still a need for the development of robust ANN model development approaches. 2010 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Models Performance Assessment to Predict Flow of Gamasyab River

Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...

متن کامل

Hybrid Models Performance Assessment to Predict Flow of Gamasyab River

Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...

متن کامل

Forecasting Industrial Production in Iran: A Comparative Study of Artificial Neural Networks and Adaptive Nero-Fuzzy Inference System

Forecasting industrial production is essential for efficient planning by managers. Although there are many statistical and mathematical methods for prediction, the use of intelligent algorithms with desirable features has made significant progress in recent years. The current study compared the accuracy of the Artificial Neural Networks (ANN) and Adaptive Nero-Fuzzy Inference System (ANFIS) app...

متن کامل

Flood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique

Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...

متن کامل

Prediction of Stage–Discharge Relationship in Bushehr Mand River Using Hybrid Fuzzy and GMDH Methods

Understanding the Stage–Discharge relationship is of great importance in the management and planning of water resources, as well as the design of hydraulic structures, the organization of rivers, and the planning of flood warning systems. With the advancement of science and increasing the speed of computing, new methods called intelligent systems have been introduced, the use of which can be a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Environmental Modelling and Software

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2010